Cómo citar
Carlier Torres, M. E. M., Harmony, T., Ricardo Garcell, J., Marroquín, J. L., & Colmenero, M. (2014). Respuesta hemodinámica a sílabas modificadas acústicamente en recién nacidos prematuros y a término adquirida por espectroscopía del infrarrojo cercano. Acta Colombiana De Psicología, 17(2), 13–21. https://doi.org/10.14718/ACP.2014.17.2.2
Licencia

Los autores que publiquen en esta Revista aceptan las siguientes condiciones:

Acta Colombiana de Psicología se guía por las normas internacionales sobre propiedad intelectual y derechos de autor, y de manera particular el artículo 58 de la Constitución Política de Colombia, la Ley 23 de 1982 y el Acuerdo 172 del 30 de Septiembre de 2010 (Reglamento de propiedad intelectual de la Universidad Católica de Colombia)

Los autores conservan los derechos de autor y ceden a la Revista el derecho de la primera publicación, con el trabajo registrado con la Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta Revista.

 

Resumen

Esta investigación evalúa, en neonatos, la respuesta hemodinámica ante sílabas modificadas acústicamente (pronunciadas de manera prolongada) en comparación con la respuesta a sílabas no modificadas (pronunciadas a una velocidad normal). El objetivo fue evaluar cuál de estas condiciones de estimulación producía una mejor discriminación silábica en dos grupos de neonatos: 13 prematuros (edad gestacional promedio de 30 semanas, DE 3 semanas) y 13 nacidos a término (edad gestacional promedio de 38 semanas, DE 1 semana). La discriminación de sílabas, en cada condición, se evaluó mediante un paradigma oddball (ensayos con sílabas iguales vs. ensayos con sílaba diferente). El análisis estadístico se basó en la comparación de la respuesta hemodinámica [oxyHb] obtenida por espectroscopia de infrarrojo cercano (NIRS) ante ensayos con sílabas iguales Vs. ensayos con una sílaba diferente en cada condición. Se encontró que la condición de sílabas modificadas obtuvo mejores resultados para la discriminación entre ensayos en ambos grupos. La amplitud de la respuesta hemodinámica ante el ensayo con una sílaba diferente fue significativamente mayor que ante el ensayo con sílabas iguales: en recién nacidos a término, t = 2,59, p = 0,024 y en los prematuros, t = 2,38, p = 0,035. Este hallazgo ocurrió en el lóbulo temporal izquierdo. Estos datos sugieren que las sílabas modificadas facilitan el procesamiento de fonemas desde el nacimiento. 

Palabras clave:

Citas

Avecilla-Ramírez, G. N., Ruiz-Correa, S., Marroquín, J. L., Harmony, T., Alba A., & Mendoza-Montoya, O. (2011). Electrophysiological auditory responses and language development in infants with leukomalacia. Brain and Language, 119, 175-183.

Benasich, A., & Tallal, P. (1996). Auditory temporal processing thresholds, habituation, and recognition memory over the 1st year. Infant Behavior and Development, 19, 339-357.

Benasich, A., & Tallal, P. (2002). Infant discrimination of rapid auditory cues predicts later language impairment. Behavioral Brain Research, 136, 31-49.

Boemio, A, Fromm, S., Braun, A., & Poeppel, D. (2005). Hierarchical and asymmetric temporal sensitivity in human auditory cortices. Nature Neuroscience, 8, 389-395.

Boersma, P., & Weenink, D. (2013). Praat: doing phonetics by computer (Version 5.3.60). [Computer software]. Retrieved March 23, 2013 from http://www.praat.org.

Bortfeld, H., Wruck, E., & Boas, D. (2007). Assessing Infants’ Cortical Response to Speech Using Near-Infrared Spectroscopy. Neuroimage, 34 (1), 407-415.

Bosh, L. (2011). Precursors to language in preterm infants: Speech perception abilities in the first year of life. In O. Braddick, J. Atkinson, & G. Innocenti (Eds). Gene Expression to Neurobiology and Behavior Human Brain Development and Developmental Disorders (pp. 239-257). Oxford, UK.

Cannestra, A.F., Wartenburger, I., Obrig, H., Villringer, A., & Toga, A.W. (2003). Functional assessment of Broca’s area using near infrared spectroscopy in humans. Neuroreport, 4, 1961-1965.

Choudhury, N., & Benasich, A. (2011). Maturation of auditory evoked potentials from 6 to 48 months: prediction to 3 and 4 year language and cognitive abilities. Clinical Neurophysiology, 122, 320-338.

Cope, M., & Delpy, D.T. (1988). System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red illumination. Medical & Biological Engineering & Computing, 26, 289-294.

Dehaene-Lambertz, G., & Dehaene, S. (1994). Speed and cerebral correlates of syllable discrimination in infants. Nature, 370, 292-295.

Gervain, J., Macagno, F., Cogoi, S., Peña, M., & Mehler, J. (2008). The neonate brain detects speech structure. Proceedings of the National Academy of Sciences of the U.S.A., 105 (37), 14222-14227.

Gervain, J., Mehler, J., Werker, J. F., Nelson, C. A., Csibra, C., Lloyd-Fox S., et al. (2011). Near-infrared spectroscopy: a report from the McDonnell infant methodology consortium. Developmental Cognitive Neuroscience, 1, 22-46.

Harmony, T., Alba, A., Marroquín, J. L., Fernández-Bouzas, A., Avecilla, G., Ricardo-Garcell, J., et al. (2009). Quantitative electroencephalography in the normal and abnormal developing human brain. In C. E. Riback, C. Arámburo de la Hoz, E. G. Jones, J. A. Larriva, & L. W. Swanson (Eds), Development to degeneration and regeneration on the nervous system (pp. 103-117). Oxford University Press.

Heim, S., Friedman, J. T., Keil, A., & Benasich, A. (2011). Reduced sensory oscillatory activity during rapid auditory processing as a correlate of language-learning impairment. Journal of Neurolinguistics, 24, 538-555.

Kuhl, P. K., Andruski, J. E., Chistovich, I. A., Chistovich, L. A., Kozhevnikova, E. V., Ryskina,et al. (1997). Cross-language analysis of phonetics units in language addressed to infants. Science, 277, 684-686.

Kuhl, P. (2004). Early language acquisition: Cracking the speech code. Nature Review Neuroscience 5, 831-843.

Kurtzberg, D., Hilpert, P.L., Kreuzer, J. A., & Vaughan, H. G. (1984). Differential maturation of cortical auditory evoked potentials to speech sound and normal full term and very low-birth weight infants. Developmental Imaging and Child Neurology, 26, 466-475.

Li, H., Tak, S., & Ye, J. C. (2012). Lipschitz Killing curvature based expected Euler characteristics for p-value correction in FNIRS. Journal of Neuroscience Methods, 204, 61-67.

May, L., Byerss-Heinlein, K., Gervain, J., & Werker, J. (2011). Language and the newborn brain: does prenatal language experience shape the neonate neural response to speech? Frontiers in Psychology, 2, 3-9.

Merzenich, M. M., Jenkins, W. M., Jonson, P., Schreiner, C., Miller, S.L., Tallal, P. (1996). Temporal processing deficit of language-learning impaired children ameliorated by training. Science, 271, 77-81.

Minagawa-Kawai Y, Mori K, Hebden JC, & Dupoux E. (2008). Optical imaging of infants’ neurocognitive development: recent advances and perspectives. Developmental Neurobiology, 68, 712-728.

Minagawa-Kawai, Y., Mori, K., Naoi, N., & Kojima, S. (2007). Neural attunement processes in infants during the acquisition of a language-specific phonemic contrast. Journal of Neuroscience 27 (2), 315-321.

Montealegre, R., & Forero, L.D. (2006). Desarrollo de la lectoescritura: Adquisición y Dominio [Development of Reading/writing skills: acquisition and dominion]. Acta Colombiana de Psicología, 9 (1), 25-40.

Narajaran, S. S., Wang, X., Merzenich, M. M, Shreiner, C. E., Johnston, P., Jenkins, W. M., et al. (1998). Speech modification algorithms used for training language learningimpaired children. IEEE Transactions on Rehabilitation Engineering 6, 257-268.

Obrig, H., & Villringer, A. (2003). Beyond the visible—imaging the human brain with light. Journal of Cerebral Blood Flow & Metabolism, 23, 1-18.

Ortiz-Mantilla, S., Choudhury, N., Leevers, H., & Benasich, A. (2008). Understanding language and cognitive deficits in very low birth weight children. Developmental Psychobiology, 50, 107-126.

Peña, M., Maki, A., Kovacic, D., Dehaene-Lambertz, G., Koizumi, H., & Bouquet, F. (2003). Sounds and silence: an optical topography study of language recognition at birth. Proceedings of the National Academy of Sciences of the U.S.A., 100, 11702-11705.

Peña, M., Pittaluga, E., & Mehler, J. (2010). Language acquisition in premature and full-term infants. Proceedings of the National Academy of Sciences of the U.S.A., 107, 3823-3828.

Pisoni, D. (1973). Auditory and phonetic memory codes in the discrimination of consonants and vowels. Perception and Psychophysics, 13, 253-260.

Poeppel, D. (2003). The analysis of speech in different temporal integration windows: cerebral lateralization as “asymmetric sampling in time.” Speech Communication 41, 245-255.

Sakatani, K., Chenb, S., Lichtyc, W., & Zuoa, H. (2009). Cerebral blood oxygenation changes induced by auditory stimulation in newborn infants measured by near infrared spectroscopy. Early Human Development, 55, 229-236.

Stevens, K. N. (2000). Acoustic Phonetics. Cambridge, MA.: MIT Press.

Studdert-Kennedy, M., Mody, M. (1995) Auditory temporal perception deficits in the reading-impaired: A critical review of the evidence. Psychonomic Bulletin & Review 2 (4), 508-514.

Suehiro, A. C. B., & Dos Santos, A. A. A. (2011). Roteiro de avaliação da Consciência fonológica (RACF) [Roadmap assessment of phonological awareness (RACF)]. Acta Colombiana de Psicología, 14 (1), 147-154.

Taga, G., Asakawa, K., Hirasawa, K., & Konishi, Y. (2003). Hemodynamic responses to visual stimulation in occipital and frontal cortex of newborn infants: a near-infrared optical topography study. Early Human Development, 75, S203-S210.

Tallal, P., Miller, S., Bedi, G., Byma, G., Wang, X., Nagarajan, S., et al. (1996). Language comprehension in language learning impaired children improved with acoustically modified speech. Science, 271, 81-84.

Telkemeyer, S., Rossi, X., Koch, S.P., Nierhaus, T., Steinbrink, J., Poeppel, D., et al. (2009). Sensitivity of Newborn Auditory Cortex to the Temporal Structure of Sounds. The Journal of Neuroscience, 29, 14726 -14733.

Trehub, S.E., & Henderson, J. L. (1996). Temporal resolution in infancy and subsequent language development. Journal of Speech and Hearing Research, 39, 1315-1320.

Villringer, A., & Chance, B. (1997). Non-invasive optical spectroscopy and imaging of human brain function. Trends in Neurosciences, 20, 435-442.

Wartenburger, I., Steinbrink, J., Telkemeyer, S., Friedrich, M., Friederici, A.D., Obrig, H. (2007). The processing of prosody: evidence of interhemispheric specialization at the age of four. Neuroimage, 34, 416-425.

Ye, J.C., Tak, S., Jang, K.E., Jung, J., Jang, J. (2009). NIRSSPM: Statistical parametric mapping for near-infrared spectroscopy. NeuroImage, 44, 428-447.

Zatorre, R.J., Belin, P. (2001). Spectral and temporal processing in human auditory cortex. Cerebral Cortex, 11, 946-953.

Citado por

Sistema OJS 3 - Metabiblioteca |