Cómo citar
Luna, D., Manzanares-Silva, M., Rodríguez-González, K., & López-Cruz, H. (2017). Memoria espacial a largo plazo en humanos entrenados en un laberinto virtual. Acta Colombiana De Psicología, 21(1), 70–82. https://doi.org/10.14718/ACP.2018.21.1.4
Licencia

Los autores que publiquen en esta Revista aceptan las siguientes condiciones:

Acta Colombiana de Psicología se guía por las normas internacionales sobre propiedad intelectual y derechos de autor, y de manera particular el artículo 58 de la Constitución Política de Colombia, la Ley 23 de 1982 y el Acuerdo 172 del 30 de Septiembre de 2010 (Reglamento de propiedad intelectual de la Universidad Católica de Colombia)

Los autores conservan los derechos de autor y ceden a la Revista el derecho de la primera publicación, con el trabajo registrado con la Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta Revista.

 

Resumen

En este estudio se evaluó la memoria espacial a largo plazo en humanos. Para ello, se empleó un diseño cuasiexperimental en el que se entrenó a tres grupos de estudiantes de pregrado en un laberinto virtual de agua para localizar una plataforma oculta cuya ubicación era señalada por un conjunto de claves. Se realizó un pretest sin plataforma antes del entrenamiento, e inmediatamente después se condujo un postest (Grupo 0 h), así como después de un intervalo de retención de dos días (Grupo 48 h) y siete días (Grupo 168 h). En el pretest no se encontró evidencia de preferencia por alguna zona del laberinto. A lo largo de los ensayos de entrenamiento, el tiempo para encontrar la meta disminuyó sin diferencias entre grupos. Durante el postest, todos los grupos mostraron una preferencia por el cuadrante reforzado, sin embargo, el tiempo de permanencia, la distancia de nado y la precisión de la conducta de búsqueda en dicha zona fue equivalente entre el Grupo 0 h y el Grupo 48 h, aunque mayor a la mostrada por el Grupo 168 h. Estos datos indican cambios ocurridos 48 h después de la adquisición en la memoria espacial a largo plazo en humanos. Se discuten los resultados a partir de procesos generales de memoria y procesos específicos propuestos por teorías particulares de memoria espacial; y al final se abordan las implicaciones clínicas y pertinentes al campo de la psicología comparada.

Palabras clave:

Citas

Aron. A., & Aron, E. N. (2001). Estadística para psicólogos. México: Prentice Hall.

Astur, R. S., Ortiz, M. L., & Sutherland, R. J. (1998). A characterization of performance by men and women in a virtual Morris water task: a large and reliable sex difference. Behavioural Brain Research, 95(1-2), 185-190. doi: http://dx.doi.org/10.1016/S0166-4328(98)00019-9.

Astur, R. S., Purton, A. J., Zaniewski, M. J., Cimadevilla, J., & Markus, E. J. (2016). Human sex differences in solving a virtual navigation problem. Behavioural Brain Research, 308, 236-243. doi:10.1016/j.bbr.2016.04.037.

Ayaz, H., Shewokis, P. A., Curtin, A., Izzetoglu, M., Izzetoglu, K., & Onaral, B. (2011). Using maze suite and functional near infrared spectroscopy to study learning in spatial navigation. Journal of Visualized Experiments, 56, e3443. doi: 10.3791/3443.

Baldi, E., Efoudebe, M., Lorenzini, C. A., & Bucherelli, C. (2005). Spatial navigation in the Morris water maze: working and long lasting reference memories. Neuroscience Letters, 378(3), 176-180. doi: http://dx.doi.org/10.1016/j.neulet.2004.12.029.

Blokland, A., Geraerts, E., & Been, M. (2004). A detailed analysis of rats' spatial memory in a probe trial of a Morris task. Behavioural Brain Research, 154(1), 71-75. doi: 10.1016/j.bbr.2004.01.022.

Burgess, N., Jackson, A., Hartley, T., & O'Keefe, J. (2000). Predictions derived from modelling the hippocampal role in navigation. Biological Cybernetics, 83(3), 301-312. doi: 10.1007/s004220000172.

Burgess, N., Maguire, E. A., & O'Keefe, J. (2002). The human hippocampus and spatial and episodic memory. Neuron, 35(4), 625-641. doi: http://dx.doi.org/10.1016/S0896-6273(02)00830-9.

Carmack, S. A., Block, C. L., Howell, K. K., & Anagnostaras, S. G. (2014). Methylphenidate enhances acquisition and retention of spatial memory. Neuroscience Letters, 567, 45-50. doi:10.1016/j.neulet.2014.03.029.

Chalfonte, B. L., & Johnson, M. K. (1996). Feature memory and binding in young and older adults. Memory & Cognition, 24(4), 403-416. doi:10.3758/BF03200930.

Chamizo, V. D., Aznar-Casanova, J. A., & Artigas, A. A. (2003). Human overshadowing in a virtual pool: Simple guidance is a good competitor against locale learning. Learning and Motivation, 34(3), 262-281. doi: https://doi.org/10.1016/S0023-9690(03)00020-1.

Clark, R. E., Broadbent, N. J., & Squire, L. R. (2005). Hippocampus and remote spatial memory in rats. Hippocampus, 15(2), 260-272. doi:10.1002/hipo.20056.

Commins, S., Cunningham, L., Harvey, D., & Walsh, D. (2003). Massed but not spaced training impairs spatial memory. Behavioural Brain Research, 139(1-2), 215-223. doi: http://dx.doi.org/10.1016/S0166-4328(02)00270-X.

Conejo, N. M., Cimadevilla, J. M., González-Pardo, H., Méndez-Couz, M., & Arias, J. L. (2013). Hippocampal inactivation with TTX impairs long-term spatial memory retrieval and modifies brain metabolic activity. PloS one, 8, e64749.doi: http://dx.doi.org/10.1371/journal.pone.0064749.

D'Hooge, R., & De Deyn, P. P. (2001). Applications of the Morris water maze in the study of learning and memory. Brain Research Reviews, 36(1), 60-90. doi: 10.1016/S0165-0173(01)00067-4.

De Winter, J. C. (2013). Using the Student's t-test with extremely small sample sizes. Practical Assessment, Research & Evaluation, 18(10), 1-12.

Demas, G. E., Nelson, R. J., Krueger, B. K., & Yarowsky, P. J. (1996). Spatial memory deficits in segmental trisomic Ts65Dn mice. Behavioural Brain Research, 82(1), 85-92. doi: http://dx.doi.org/10.1016/S0166-4328(97)81111-4.

Ferrara, M., Iaria, G., de Gennaro, L., Guariglia, C., Cursio, G., Tempesta, D., & Bertini, M. (2006). The role of sleep in the consolidation of route learning in humans: A behavioural study. Brain Research Bulletin, 71(1-3), 4-9. doi: http://dx.doi.org/10.1016/j.brainresbull.2006.07.015.

Florian, C., & Roullet, P. (2004). Hippocampal CA3-region is crucial for acquisition and memory consolidation in Morris water maze task in mice. Behavioural Brain Research, 154(2), 365-374. doi: http://dx.doi.org/10.1016/j.bbr.2004.03.003.

Goodrich-Hunsaker, N. J., Livingstone, S. A., Skelton, R. W., & Hopkins, R. O. (2009). Spatial deficits in a virtual water maze in amnesic participants with hippocampal damage. Hippocampus, 20(4), 481-491. doi:10.1002/hipo.20651.

Hamilton, D., Driscoll, I., & Sutherland, R. J. (2002). Human place learning in a virtual Morris water task: some important constraints on the flexibility of place navigation. Behavioral Brain Research, 129(1-2), 159-170. doi: http://dx.doi.org/10.1016/S0166-4328(01)00343-6.

Hamilton, D. A., Kodituwakku, P., Sutherland, R. J., & Savage, D. D. (2003). Children with Fetal Alcohol Syndrome are impaired at place learning but not cued-navigation in a virtual Morris water task. Behavioural Brain Research, 143(1), 85-94. doi: http://dx.doi.org/10.1016/S0166-4328(03)00028-7.

Hardt, O., Hupbach, A., & Nadel, L. (2009). Factors moderating blocking in human place learning: The role of task instructions. Learning & Behavior, 37(1), 42-59. doi: 10.3758/LB.37.1.42.

Izquierdo, I., Medina, J. H., Vianna, M. R. M., Izquierdo, L. A., & Barros, D. M. (1999). Separate mechanisms for short- and long-term memory. Behavioural Brain Research, 103(1), 1-11. doi: http://dx.doi.org/10.1016/S0166-4328(99)00036-4.

Jacobs, W. J., Laurance, H. E., & Thomas, K. G. (1997).

Place learning in virtual space I: Acquisition, overshadowing, and transfer. Learning and Motivation, 28, 521-541. doi: 10.1006/lmot.1997.0977.

Jones, C. M., & Healy, S. D. (2006). Differences in cue use and spatial memory in men and women. Proceedings of the Royal Society of London B: Biological Sciences, 273(1598), 2241-2247. doi: 10.1098/rspb.2006.3572.

Kelly, D. M., & Gibson, B. M. (2007). Spatial navigation: Spatial learning in real and virtual environments. Comparative Cognition & Behavior Reviews, 2, 111-124. doi: 10.3819/ccbr.2008.20007.

Khan, A., & Rayner, G. D. (2003). Robustness to non-normality of common tests for the many-sample location problem. Journal of Applied Mathematics & Decision Sciences, 7(4), 187-206.

Kolarik, B. S., Shahlaie, K., Hassan, A., Borders, A. A., Kaufman, K. C., Gurkoff, G., ... Ekstrom, A. D. (2016). Impairments in precision, rather than spatial strategy, characterize performance on the virtual Morris Water Maze: A case study. Neuropsychologia, 80, 90-101. doi: 10.1016/j.neuropsychologia.2015.11.013.

Maguire, E. A., Nannery, R., & Spiers, H. J. (2006). Navigation around London by a taxi driver with bilateral hippocampal lesions. Brain, 129(11), 2894-2907. doi: https://doi.org/10.1093/brain/awl286.

Manns, J. R., & Eichenbaum, H. (2009). A cognitive map for object memory in the hippocampus. Learning & Memory, 16(10), 616-624. doi: 10.1101/lm.1484509.

Méndez-Couz, M., Conejo, N. M., González-Pardo, H., & Arias, J. L. (2015). Functional interactions between dentate gyrus, striatum and anterior thalamic nuclei on spatial memory retrieval. Brain research, 1605, 59-69. doi: 10.1016/j.brainres.2015.02.005.

Mettke-Hofmann, C., & Gwinner, E. (2003). Long-term memory for a life on the move. Proceedings of the National Academy of Sciences, 100(10), 5863-5866. doi: 10.1073/pnas.1037505100.

Morellini, F. (2013). Spatial memory tasks in rodents: What do they model? Cell Tissue Research, 354(1), 273-286. doi: 10.1007/s00441-013-1668-9.

Morris, R. G. M. (1984). Developments of a water-maze procedure for studying spatial learning in the rat. Journal of Neuroscience Methods, 11(1), 47-60. doi: http://dx.doi.org/10.1016/0165-0270(84)90007-4

Morris, R. (2013). Neurobiology of Learning and Memory. En D. W. Pfaff (Ed.), Neuroscience in the 21st Century (pp.2173-2211). New York: Springer.

Morris, R. G. M., Garrud, P., Rawlins, J. N. P., & O'Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesion. Nature, 297(5868), 681-683. doi: 10.1038/297681a0.

Morris, R. G., & Mayes, A. R. (2004). Long-term spatial memory: introduction and guide to the special section. Neuropsychology, 18(3), 403-404. doi: http://dx.doi.org/10.1037/0894-4105.18.3.403.

Moscovitch, M., Nadel, L., Winocur, G., Gilboa, A., & Rosenbaum, R. S. (2006). The cognitive neuroscience of remote episodic, semantic and spatial memory. Current Opinion in Neurobiology, 16(2), 179-190. doi: http://dx.doi.org/10.1016/j.conb.2006.03.013.

Moser, M. B., & Moser, E. I. (1998). Distributed encoding and retrieval of spatial memory in the hippocampus. The Journal of Neuroscience, 18(18), 7535-7542.

O'Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford: Oxford University Press.

Odinot, G., & Wolters, G. (2006). Repeated recall, retention interval and the accuracy-confidence relation in eyewitness memory. Applied Cognitive Psychology, 20(7), 973-985. doi: 10.1002/acp.1263.

Postma, A., Jager, G., Kessels, R. P., Koppeschaar, H. P., & Van Honk, J. (2004). Sex differences for selective forms of spatial memory. Brain and Cognition, 54(1), 24-34. doi: 10.1016/S0278-2626(03)00238-0.

Rosenbaum, R. S., Cassidy, B. N., & Herdman, K. A. (2015). Patterns of preserved and impaired spatial memory in a case of developmental amnesia. Frontiers in Human Neuroscience, 9, 196. doi: 10.3389/fnhum.2015.00196.

Rosenbaum, R. S., Winocur, G., Grady, C. L., Ziegler, M., & Moscovitch, M. (2007). Memory for familiar environments learned in the remote past: fMRI studies of healthy people and an amnesic person with extensive bilateral hippocampal lesions. Hippocampus, 17(12), 1241-1251. doi: 10.1002/hipo.20354.

Ross, S. P., Skelton, R. W., & Mueller, S. C. (2006). Gender differences in spatial navigation in virtual space: implications when using virtual environments in instruction and assessment. Virtual Reality, 10(3), 175-184. doi: 10.1007/s10055-006-0041-7.

Roth, T. C., LaDage, L. D., & Pravosudov, V. V. (2012). Evidence for long-term spatial memory in a parid. Animal Cognition, 15(2), 149-154. doi: 10.1007/s10071-011-0440-3.

Ruetti, E., Justel, N., & Bentosela, M. (2009). Perspectivas clásicas y contemporáneas acerca de la memoria. Suma Psicológica, 16(1), 65-83.

Sara, S. J. (2000). Retrieval and reconsolidation: Toward a neurobiology of remembering. Learning & Memory, 7(2), 73-84. doi: 10.1101/lm.7.2.73.

Shiflett, M. W., Tomaszycki, M. L., Rankin, A. Z., & De-Voogd, T. J. (2004). Long-term memory for spatial locations in a food-storing bird (Poecile atricapilla) requires activation of NMDA receptors in the hippocampal formation during learning. Behavioral Neuroscience, 118(1), 121-130. doi: http://doi.apa.org/getdoi.cfm?doi=10.1037/0735-7044.118.1.12.

Schoenfeld, R., Foreman, N., & Leplow, B. (2014). Ageing and spatial reversal learning in humans: Findings from a virtual water maze. Behavioural Brain Research, 270, 47-55. doi: 10.1016/j.bbr.2014.04.036.

Sociedad Mexicana de Psicología. (2010). Código ético del psicólogo. México: Trillas.

Spieker, E. A., Astur, R. S., West, J. T., Griego, J. A., & Rowland, L. M. (2012). Spatial memory deficits in a virtual reality eight-arm radial maze in schizophrenia. Schizophrenia Research, 135(1-3), 84-89. doi: 10.1016/j.schres.2011.11014.

Spreng, M., Rossier, J., & Schenk, F. (2002). Spaced training facilitates long-term retention of place navigation in adult but not in adolescent rats. Behavioural Brain Research, 128(1), 103-108. doi: http://dx.doi.org/10.1016/S0166-4328(01)00266-2.

Squire, L. R. (2004). Memory systems of the brain: A brief history and current perspective. Neurobiology of Learning and Memory, 82(3), 171-177. doi: 10.1016/j.nlm.2004.06.005.

Teng, E., & Squire, L. R. (1999). Memory for places learned long ago is intact after hippocampal damage. Nature, 400(6745), 675-677. doi: 10.1038/23276.

Tramoni, E., Felician, O., Barbeau, E. J., Guedj, E., Guye, M., Bartolomei, F., & Ceccaldi, M. (2011). Long-term consolidation of declarative memory: insight from temporal lobe epilepsy. Brain, 134(3), 816-831. doi: 10.1093/brain/awr002.

Vorhees, C. V., & Williams, M. T. (2014). Assessing spatial learning and memory in rodents. ILAR Journal, 55(2), 310-332. doi: https://doi.org/10.1093/ilar/ilu013.

Wilkie, D. M., & Willson, R. J. (1989). Pigeons' (Columba livia) spatial reference memory is stable over long retention intervals. Bulletin of the Psychonomic Society, 27(3), 271-273. doi: 10.3758/BF03334604.

Winocur, G., Moscovitch, M., & Sekeres, M. (2007). Memory consolidation or transformation: context manipulation and hippocampal representations of memory. Nature Neuroscience, 10, 555-557. doi: 10.1038/nn1880.

Woolley, D. G., Laeremans, A., Gantois, I., Mantini, D., Vermaercke, B., Op de Beeck, ... D'Hooge, R. (2013). Homologous involvement of striatum and prefrontal cortex in rodent and human water maze learning. Proceedings of the National Academy of Sciences, 110(8), 3131-3136. doi: doi/10.1073/pnas.1217832110.

World Medical Association Declaration of Helsinki. (2008). Ethical principles for medical research involving human subjects. In World Medical Association. Recuperado de http://www.wma.net/en/30publications/10policies/b3/in-dex.html

##submission.citations.for##

Sistema OJS 3 - Metabiblioteca |