Authors who publish in this journal agree to the following terms:
Acta Colombiana de Psicología complies with international intellectual property and copyright laws, and particularly with Article No. 58 of the Political Constitution of Colombia, Law No. 23 of 1982, and the Agreement No. 172 of September 30, 2010 (Universidad Católica de Colombia Intellectual Property Regulation).
Authors retain their copyright and grant to the Acta Colombiana de Psicología the right of first publication, with the work registered under Creative Commons attribution license, which allows third parties to use the published material, provided they credit the authorship of the work and the first publication in this Journal.
Abstract
The objective of this study was to evaluate the internal structure dimensionality of the Utrech Work Engagement Scale – Student (UWES–9S) and its association with the academic procrastination reported by 321 psychology students from a private university in Cajamarca (Peru) ranging between 17 and 41 years old (79% women; Mage = 22.50 years; 84% between 17 and 25 years old). The UWES-9S and the Academic Procrastination Scale (APS) were used and both a confirmatory and a bifactor analysis were conducted on the UWES–9S, as well as a structural regression analysis that specified the influence of the general and specific dimensions of engagement on the dimensions of academic procrastination. Regarding the results, the bifactor model is the one that best defines the construct, whereas the general dimension of engagement has a greater influence on the dimensions of academic procrastination than the specific ones. The theoretical and practical implications of the findings are discussed, as well as the need to focus on the students’ positive resources in order to achieve greater involvement in their academic work.
Keywords:
References
American Educational Research Association, American Psychological Association & National Council on Measurement in Education. (2014). Standards for Educational and Psychological Testing. American Educational Research Association.
Appleton, J. J., Christenson, S. L., Kim, D., & Reschly, A. L. (2006). Measuring cognitive and psychological engagement: Validation of the Student Engagement Instrument. Journal of School Psychology, 44(5), 427-445. https://doi. org/10.1016/j.jsp.2006.04.002
Asociación Médica Mundial. (1964). Declaración de Helsinki. AMM. http://www.conamed.gob.mx/prof_salud/pdf/helsinki.pdf
Asparouhov, T., & Muthén, B. (2006). Robust chi square difference testing with mean and adjusted test statistics.
En Mplus web notes (p. 9). University of California. https:// www.statmodel.com/download/webnotes/webnote10.pdf
Ato, M., López, J., & Benavente, A. (2013). Un sistema de clasificación de los diseños de investigación en psicología. Anales de Psicología, 29(3), 1038-1059. https://doi. org/10.6018/analesps.29.3.178511
Barraza, A., & Barraza, S. (2018). Evidencias de validez y confiabilidad de la Escala de Procrastinación Académica en una población estudiantil mexicana. Revista de Psicología y Ciencias del Comportamiento de la Unidad Académica de Ciencias Jurídicas y Sociales, 9(1), 75-99. http://www.scielo.org.mx/scielo.phpscript=sci_arttext&pid
=S2007-18332018000100075
Busko, D. A. (1998). Causes and consequences of perfectionism and procrastination: A structural equation model
(Tesis de maestría). University of Guelph, Guelph, Ontario.
Byrne, B. M. (2009). Structural equation modeling with AMOS: Basic concepts, applications, and programming. Routledge & Taylor & Francis.
Byrne, Z. S., Peters, J. M., & Weston, J. W. (2016). The struggle with employee engagement: Measures and construct clarification using five samples. Journal of Applied Psychology, 101(9), 1201-1227. https://doi.org/10.1037/apl0000124
Cadime, I., Lima, S., Marques-Pinto, A., & Ribeiro, I. (2016). Measurement invariance of the Utrecht Work Engagement Scale for Students: A study across secondary school pupils and university students. European Journal of Developmental Psychology, 13(2), 254-263. https://doi.org/10.1080/17405629.2016.1148595
Canivez, G. L. (2016). Bifactor modeling in construct validation of multifactored tests: Implications for multidimensionality and test interpretation. En K. Schweizer & C. DiStefano (Eds.), Principles and methods of test construction: Standards and recent advancements (pp. 247-271).
Hogrefe.
Çapri, B., Gündüz, B., & Akbay, S. E. (2017). Utrecht Work Engagement Scale-Student Forms’ (UWES-SF) adaptation to Turkish, validity and reliability studies, and the mediator role of work engagement between academic procrastination and academic responsibility. Educational Sciences: Theory & Practice, 17(2), 411-435. https://doi.org/10.12738/estp.2017.2.0518
Carle, A. C., Jaffee, D., Vaughan, N. W., & Eder, D. (2009). Psychometric properties of three new national survey of
student engagement based engagement scales: An item response theory analysis. Research in Higher Education, 50(8), 775-794. https://doi.org/10.1007/s11162-009-9141-z
Carmona-Halty, M. A., Schaufeli, W. B., & Salanova, M. (2019). The Utrecht Work Engagement Scale for Students (UWES9S): Factorial Validity, Reliability, and Measurement Invariance in a Chilean Sample of Undergraduate University Students. Frontiers in Psychology, 10, 1017. https://doi.org/10.3389/fpsyg.2019.01017
Chen, F. F. (2007). Sensitivity of goodness of fit indexes to lack of measurement invariance. Structural
Equation Modeling, 14(3), 464-504. https://doi.org/10.1080/10705510701301834
Chen, F. F., Jing, Y., Hayes, A., & Lee, J. M. (2012). Two Concepts or Two Approaches? A Bifactor Analysis of Psychological and Subjective Well-Being. Journal of Happiness Studies, 14(3), 1033-1068. https://doi.
org/10.1007/s10902-012-9367-x
Closson, L. M., & Boutilier, R. R. (2017). Perfectionism, academic engagement, and procrastination among undergraduates: The moderating role of honors student status. Learning and Individual Differences, 57, 157-162. https:// doi.org/10.1016/j.lindif.2017.04.010
Colegio de Psicólogos del Perú. (2017). Código de ética y deontología. https://www.cpsp.pe/documentos/marco_legal/codigo_de_etica_y_deontologia.pdf
DiStefano, C., Liu, J., Jiang, N., & Shi, D. (2018). Examination of the weighted root mean square residual: Evidence for trustworthiness? Structural Equation Modeling, 25(3), 453-466. https://doi.org/10.1080/10705511.2017.1390394
Dogan, U. (2015). Student engagement, academic self-efficacy, and academic motivation as predictors of academic performance. The Anthropologist, 20(3), 553-561. https://doi.org/10.1080/09720073.2015.11891759
Dominguez-Lara, S. (2016a). Datos normativos de la Escala de Procrastinación Académica en estudiantes de psicología de Lima. Evaluar, 16(1), 20-30. https://revistas.unc.edu.ar/index.php/revaluar/article/view/15715
Dominguez-Lara S. (2016b). Secretos del coeficiente alfa. Actas Urológicas Españolas, 40(7), 471. https://doi.
org/10.1016/j.acuro.2016.04.002
Dominguez-Lara, S. (2016c). Errores correlacionados y estimación de la fiabilidad en estudios de validación: comentarios al trabajo validación de la escala ehealth literacy (eheals) en población universitaria española. Revista Española de Salud Pública, 90(9), e1-e2. http://scielo.isciii.es/pdf/resp/ v90/1135-5727-resp-90-e60002.pdf
Dominguez-Lara, S. (2018). Propuesta de puntos de corte para cargas factoriales: una perspectiva de fiabilidad de constructo. Enfermería Clínica, 28(6), 401-402. https://doi. org/10.1016/j.enfcli.2018.06.002
Dominguez-Lara, S., & Merino-Soto, C. (2017). Una modificación del coeficiente alfa de Cronbach por errores correlacionados. Revista Médica de Chile, 145(2), 269-274. https://doi.org/10.4067/S0034-98872017000200018
Dominguez-Lara, S., & Merino-Soto, C. (2018). Análisis de las malas especificaciones en modelos de ecuaciones estructurales. Revista Argentina de Ciencias del Comportamiento, 0(2), 19-24. https://doi.org/10.30882/1852.4206.v10.n2.19 595
Dominguez-Lara, S., Prada-Chapoñan, R., & Moreta-Herrera, R. (2019). Gender differences in the influence of personality on academic procrastination in Peruvian college students. Acta Colombiana de Psicología, 22(2), 125-136. https://doi.org/10.14718/ACP.2019.22.2.7
Ellis, P. (2010). The essential guide to effect sizes: Statistical power, meta-analysis, and the interpretation of research results. Cambridge University Press.
Fernández-Martínez, E., Andina-Díaz, E., Fernández-Peña, R., García-López, R., Fulgueiras-Carril, I., & Liébana-Presa, C. (2017). Social networks, engagement and resilience in university students. International Journal of Environmental Research and Public Health, 14(12), E1488. https://doi. org/10.3390/ijerph14121488
Fornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and
Measurement Error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.2307/3151312
Garzón, A., & Gil, J. (2017). El papel de la procrastinación académica como factor de la deserción universitaria. Revista Complutense de Educación, 28(1), 307-324. https://doi. org/10.5209/rev_RCED.2017.v28.n1.49682
González-Brignardello, M. P., & Sánchez-Elvira-Paniagua, A. (2013). ¿Puede amortiguar el engagement los efectos nocivos de la procrastinación académica? Acción Psicológica,10(1), 117-134. https://doi.org/10.5944/ap.10.1.7039
Hair, J. F., Black, B., Babin, B., Anderson, R. E., & Tatham, R. L. (2010). Multivariate data analysis. Prentice Hall.
Hoppe, J. D., Prokop, P., & Rau, R. (2018). Empower, not impose!: Preventing academic procrastination. Journal of
Prevention & Intervention in the Community, 46(2), 184-198. https://doi.org/10.1080/10852352.2016.1198172
Hu, Q., & Schaufeli, W. B. (2009). The factorial validity of the Maslach Burnout Inventory-Student Survey in China.
Psychological Reports, 105(2), 394-408. https://doi.org/10.2466/PR0.105.2.394-408
Kline, R. B. (2016). Principles and practice of structural equation modeling. The Guilford Press.
Kyriazos, T. A. (2018). Applied psychometrics: sample size and sample power considerations in factor analysis (EFA, CFA) and SEM in general. Psychology, 9, 2207-2230. https://doi.org/10.4236/psych.2018.98126
Lac, A., & Donaldson, C. D. (2017). Higher-order and bifactor models of the drinking motives questionnaire:
Examining competing structures using confirmatory factor analysis. Assessment, 24(2), 222-231. https://doi.
org/10.1177/1073191115603503
Lauriola, M., & Iani, L. (2017). Personality, positivity and happiness: A mediation analysis using a bifactor model.
Journal of Happiness Studies, 18(6), 1659-1682. https://doi.org/10.1007/s10902-016-9792-3
Loscalzo, Y., & Giannini, M. (2019). Study engagement in Italian university students: a confirmatory factor analysis of the Utrecht Work Engagement Scale-Student version. Social Indicators Research, 142(2), 845-854. https://doi.org/10.1007/s11205-018-1943-y
Luciano, J. V., Barrada, J. R., Aguado, J., Osma, J., & GarcíaCampayo, J. (2014). Bifactor analysis and construct validity of the HADS: A cross-sectional and longitudinal study in fibromyalgia patients. Psychological Assessment, 26(2), 395-406. https://doi.org/10.1037/a0035284
Malgady, R. (2007). How skew are psychological data? A standardized index of effect size. The Journal of General
Psychology, 134(3), 355-359. https://doi.org/10.3200/ GENP.134.3.355-360
Mardia, K. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika, 57(3), 519-530. https://doi.org/10.2307/2334770
Maslach, C., Schaufeli, W. B., & Leiter, M. P. (2001). Job burnout. Annual Review of Psychology, 52, 397-422. https://doi.org/10.1146/annurev.psych.52.1.397
Mazer, J. P. (2012). Development and validation of the Student Interest and Engagement Scales. Communication Methods and Measures, 6(2), 99-125. https://doi.org/10.1080/19312 458.2012.679244
McDonald, R. P., & Ho, M.-H. R. (2002). Principles and practice in reporting structural equation analyses. Psychological Methods, 7(1), 64-82. https://doi. org/10.1037/1082-989X.7.1.64
Medrano, L., Moretti, L., & Ortiz, A. (2015). Medición del Engagement Académico en Estudiantes Universitarios.
Revista Iberoamericana de Diagnóstico y Evaluación e Avaliação Psicológica, 40(1), 114-123. https://www.re
dalyc.org/pdf/4596/459645432012.pdf
Medrano, L. A., Galleano, C., Galera, M., & del ValleFernández, R. (2010). Creencias irracionales, rendimiento y deserción académica en ingresantes universitarios. Liberabit, 16(2), 183-192. http://www.scielo.org.pe/pdf/liber/v16n2/a08v16n2
Meng, L., & Jin, Y. (2017). A confirmatory factor analysis of the Utrecht Work Engagement Scale for students in a Chinese sample. Nurse Education Today, 49, 129-134. https://doi.org/10.1016/j.nedt.2016.11.017
Merino-Soto, C. (2015). Re-análisis de la confiabilidad del Cuestionario de autoeficacia profesional (AU10). En
Maffei et al., Pensamiento Psicológico, 13(1), 137-138. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid
=S1657-89612015000100010
Moreta-Herrera, R., & Durán-Rodríguez, T. (2018). Propiedades psicométricas de la Escala de Procrastinación
Académica (EPA) en estudiantes de psicología de Ambato, Ecuador. Revista Salud & Sociedad, 9(3), 236-247. https://doi.org/10.22199/S07187475.2018.0003.00003
Muthén, L. K., & Muthén, B. O. (1998-2015). Mplus User’s guide (7. ª ed.). Muthén & Muthén.
Palos, R., Maricutoiu, L. P., & Coster, I. (2019). Relations between academic performance, student engagement, and student burnout: A cross-lagged analysis of a two-wave study. Studies in Educational Evaluation, 60, 199-204. https://doi.org/10.1016/j.stueduc.2019.01.005
Patrzek, J., Sattler, S., van Veen, F., Grunschel, C., & Fries, S. (2015). Investigating the effect of academic procrastination on the frequency and variety of academic misconduct: a panel study. Studies in Higher Education, 40(6), 1014-1029. https://doi.org/10.1080/03075079.2013.854765
Ponterotto, J., & Charter, R. (2009). Statistical extensions of Ponterotto and Ruckdeschel’s (2007) reliability matrix for estimating the adequacy of internal consistency coefficients. Perceptual and Motor Skills, 108(3), 878-886. https://doi.org/10.2466/PMS.108.3.878-886
Raykov, T. (2004) Point and interval estimation of reliability for multiple-component measuring instruments via linear constraint covariance structure modeling, Structural Equation Modeling, 11(3), 342-356. https://doi.org/10.1207/s15328007sem1103_3
Reise, S. P. (2012). The rediscovery of bifactor measurement models. Multivariate Behavioral Research, 47(5), 667-696. https://doi.org/1080/00273171.2012.715555
Reise, S. P. Scheines, R., Widaman, K. F., & Haviland, M. G. (2013). Multidimensionality and structural coefficient bias in structural equation modeling: A bifactor perspective. Educational and Psychological Measurement, 73(1), 5-26. https://doi.org/10.1177/0013164412449831
Reschly, A. L., & Christenson, S. L. (2012). Jingle, jangle, and conceptual haziness: Evolution and future directions of the engagement construct. En S. L. Christenson, A. L. Reschly & C. Wylie (Eds.), Handbook of research on student engagement (pp. 3-19). Springer Science & Business Media. https://doi.org/10.1007/978-1-4614-2018-7_1
Rocha, C. F., Zelaya, Y. F., Sánchez, D. M., & Pérez, F. A. (2017). Prediction of University Desertion through
Hybridization of Classification Algorithms. En Proceedings of the 4th Annual International Symposium on Information Management and Big Data (pp. 215-222). http://ceur-ws. org/Vol-2029/paper21.pdf
Rodriguez, M., & Ruiz, M. (2008). Atenuación de la asimetría y de la curtosis de las puntuaciones observadas mediante transformaciones de variables: Incidencia sobre la estructura factorial. Psicológica, 29, 205-227. https://www.uv.es/psicologica/articulos2.08/6RODRIGUEZ.pdf
Rodriguez, A., Reise, S. P., & Haviland, M. G. (2016). Applying bifactor statistical indices in the evaluation of psychological measures. Journal of Personality Assessment, 98(3), 223-237. https://doi.org/10.1080/00223891.2015.1089249
Römer, J. (2016). The Korean Utrecht Work Engagement ScaleStudent (UWESS): A factor validation study. TPM Testing, Psychometrics, Methodology in Applied Psychology, 23(1), 65-81. https://doi.org/10.4473/TPM23.1.5
Salanova, M., Bresó, E., & Schaufeli, W. B. (2005). Hacia un modelo espiral de las creencias de eficacia en el estudio del burnout y del engagement. Ansiedad y estrés, 11(2-3), 215-231. http://www.want.uji.es/download/hacia-un-modeloespiral-de-las-creencias-de-eficacia-en-el-estudio-del-bur
nout-y-del-engagement/
Salanova, M., Schaufeli, W. B., Martinez, I., & Bresó, E. (2010). How obstacles and facilitators predict academic
performance: the mediating role of study burn out and engagement. Anxiety, Stress & Coping, 23(1), 53-70. https://doi.org/10.1080/10615800802609965
Salanova, M., Schaufeli, W. B., Llorens, S., Peiró, J. M., & Grau, R. (2000). Desde el «burnout» al «Engagement»:
¿una nueva perspectiva? Revista de Psicología del Trabajoy de las Organizaciones, 16(2), 117-134. https://journals.copmadrid.org/jwop/art/7c590f01490190db0ed02a5070e20f01
Sánchez-Cardona, I., Rodríguez-Montalbán, R., Toro-Alfonso, J., & Moreno-Velázquez, I. (2016). Psychometric properties of the Utrecht Work Engagement Scale-Student (UWES-S) in university students in Puerto Rico. Revista Mexicana de Psicología, 33(2), 121-134. https://psycnet.apa.org/record/2016-37425-004
Saris, W. E, Satorra, A., & van der Veld, W. M. (2009). Testing structural equation modeling or detection of misspecifications? Structural Equation Modeling, 16(4), 561-582. https://doi.org/10.1080/10705510903203433
Schaufeli, W., & Bakker, A. B. (2003). UWES Utrecht Work Engagement Scale. Utrecht University. https://www.wil
marschaufeli.nl/publications/Schaufeli/Test%20Manuals/Test_manual_UWES_Espanol.pdf
Schaufeli, W. B., & Bakker, A. B. (2010). Defining and measuring work engagement: Bringing clarity concept. En
A. B. Bakker & M. P. Leiter (Eds.), Work engagement: A handbook of essential theory and research (pp. 10-24).
Psychology Press.
Schaufeli, W., & De Witte, H. (2017). Outlook Work Engagement in Contrast to Burnout: Real and Redundant!
Burnout Research, 5, 58-60. https://doi.org/10.1016/j.burn.2017.06.002
Schaufeli, W. B., & Salanova, M. (2007). Efficacy or inefficacy, that’s the question: Burnout and engagement, and their relationships with efficacy beliefs. Anxiety, Coping & Stress, 20(2), 177-196. https://doi.
org/10.1080/10615800701217878 Schaufeli, W. B., & Salanova, M. (2011). Work engagement: On how to better catch a slippery concept. European Journal of work and Organizaytiponal Psychology, 20(1), 39-46.
https://doi.org/10.1080/1359432X.2010.515981
Schaufeli, W. B., Bakker, A. B., & Salanova, M. (2006). The measurement of work engagement with a short
questionnaire: a cross-national study. Educational and Psychological Measurement, 66(4), 701-716. https://doi.
org/10.1177/0013164405282471
Schaufeli, W. B., Martinez, I. M., Marques-Pinto, A., Salanova, M., & Bakker, A. (2002). Burn out and engagement in university students: a cross-national study. Journal of Cross-Cultural Psychology, 33(5), 464-481. https://doi.
org/10.1177/0022022102033005003
Schaufeli, W. B., Salanova, M., González-Romá, V., & Bakker, A. B. (2002). The measurement of engagement and burnout: a two sample confirmatory factor analytic approach. Journal of Happiness Studies, 3(1), 71-92. https://doi.org/10.1023/a:1015630930326
Schaufeli, W. B., Shimazu, A., Hakanen, J., Salanova, M., & De Witte, H. (2019). An ultra-short measure for work engagement: The UWES-3 validation across five countries. European Journal of Psychological. Assessment, 35(4),
-591. https://doi.org/10.1027/1015-5759/a000430
Serrano, C., Andreu, Y., Murgui, S., & Martínez, P. (2019). Psychometric properties of Spanish version student Utrecht Work Engagement Scale (UWES-S-9) in high-school students. The Spanish Journal of Psychology, 22, e21. https://doi.org/10.1017/sjp.2019.25
Shrive, F. M., Stuart, H., Quan, H., & Ghali, W. A. (2006). Dealing with missing data in a multi-question depression scale: a comparison of imputation methods. BMC Medical Research Methodology, 6(1), 57. https://doi.
org/10.1186/1471-2288-6-57
Silva, J. O., Junior, G. A., Coelho, I. C., Picharski, G. L., & Zagonel, I. P. (2018). Engajamento entre Estudantes do
Ensino Superior nas Ciências da Saúde (Validação do Questionário Ultrecht Work Engagement Scale (UWES-S)
com Estudantes do Ensino Superior nas Ciências da Saúde). Revista Brasileira de Educação Médica, 42(2), 15-25.
https://doi.org/10.1590/1981-52712015v42n2rb20170112
Sijtsma, K. (2009). On the use, the misuse, and the very limited usefulness of Cronbach’s alpha. Psychometrika, 74(1), 107- 120. https://doi.org/10.1007/s11336-008-9101-0
Smits, I. A., Timmerman, M. E., Barelds, D. P., & Meijer, R. R. (2015). The Dutch symptom checklist-90-revised: is
the use of the subscales justified? European Journal of Psychological Assessment, 31(4), 263-271. https://doi.
org/10.1027/1015-5759/a000233
Steel, P. (2007). The nature of procrastination: A meta-analytic and theoretical review of quintessential self-regulatory failure. Psychological Bulletin, 133(1), 65-94. https://doi. org/10.1037/0033-2909.133.1.65
Steel, P. (2011). Procrastinación. Editorial Grijalbo.
Steel, P., & Klingsieck, K. B. (2016). Academic procrastination: Psychological antecedents revisited. Australian
Psychologist, 51(1), 36-46. https://doi.org/10.1111/ap.12173
Stefansson, K. K., Gestsdottir, S., Geldhof, G. J., Skulason, S., & Lerner, R. M. (2016). A bifactor model of school engagement: Assessing general and specific aspects of behavioral, emotional and cognitive engagement among adolescents. International Journal of Behavioral Development, 40(5), 471-480. https://doi.org/10.1177/0165025415604056
Strunk, K. K., Cho, Y., Steele, M. R., & Bridges, S. L. (2013). Development and validation of a 2x2 model of time-related academic behavior: Procrastination and timely engagement. Learning and Individual Differences, 25(1), 35-44. https://doi.org/10.1016/j.lindif.2013.02.007
Wang, M. T., Fredricks, J. A., Ye, F., Hofkens, T. L., & Linn, J. S. (2016). The math and science engagement scales:
Scale development, validation, and psychometric properties. Learning and Instruction, 43, 16-26. https://doi.
org/10.1016/j.learninstruc.2016.01.008
Wellborn, J. G., & Connell, J. P. (1987). Manual for the Rochester Assessment Package for Schools. University of
Rochester.
West, S. G., Taylor, A. B., & Wu, W. (2012). Model fit and model selection in structural equation modeling. En R. H.
Hoyle (Ed.), Handbook of Structural Equation Modeling (pp. 209-231). Guilford.
Wolf, E., Harrington, K., Clark, S., & Miller, M. (2013). Sample size requirements for structural equations modeling: an evaluation of power, bias, and solution propriety. Educational and Psychological Measurement, 76(6), 913-934. https://doi.org/10.1177/0013164413495237
Zhen, R., Liu, R.-D., Ding, Y., Wang, J., Liu, Y., & Xu, L. (2017). The mediating roles of academic self-efficacy and academic emotions in the relation between basic psychological needs satisfaction and learning engagement among Chinese adolescent students. Learning and Individual Differences, 54, 210-216. https://doi.org/10.1016/j.lindif.2017.01.017
Zinbarg, R. E., Yovel, I., Revelle, W., & McDonald, R. P. (2006). Estimating generalizability to a latent variable common to all of a scale’s indicators: A comparison of estimators for ωh. Applied Psychological Measurement, 30(2), 121-144. https://doi.org/10.1177/0146621605278814