Cómo citar
Dominguez-Lara, S. A., Sánchez-Villena, A. R., & Fernández-Arata, M. (2020). Propiedades psicométricas de la UWES-9S en estudiantes universitarios peruanos. Acta Colombiana De Psicología, 23(2), 7–39. https://doi.org/10.14718/ACP.2020.23.2.2
Licencia

Los autores que publiquen en esta Revista aceptan las siguientes condiciones:

Acta Colombiana de Psicología se guía por las normas internacionales sobre propiedad intelectual y derechos de autor, y de manera particular el artículo 58 de la Constitución Política de Colombia, la Ley 23 de 1982 y el Acuerdo 172 del 30 de Septiembre de 2010 (Reglamento de propiedad intelectual de la Universidad Católica de Colombia)

Los autores conservan los derechos de autor y ceden a la Revista el derecho de la primera publicación, con el trabajo registrado con la Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta Revista.

 

Resumen

El objetivo del presente estudio fue evaluar la dimensionalidad de la estructura interna de la versión para estudiantes de la Utrech Work Engagement Scale (UWES-9S), así como su asociación con la procrastinación académica en 321 estudiantes de psicología de una universidad privada de Cajamarca, Perú, con edades entre los 17 y los 41 años (79 % mujeres; Medad = 22.50 años; 84 % entre 17 y 25 años). Para esto, se administró la UWES-9S y la Escala de Procrastinación Académica (EPA), y se realizó un análisis factorial confirmatorio y bifactor para la UWES-9S, así como un análisis de regresión estructural para identificar la influencia de las dimensiones general y específicas del engagement sobre las dimensiones de la procrastinación académica. Como resultados, el modelo bifactor muestra una mejor definición del constructo, y la dimensión general del engagement presenta mayor influencia sobre las dimensiones de la procrastinación académica que las específicas. Al final se discuten las implicaciones teóricas y prácticas de los hallazgos, así como la necesidad de enfocarse en los recursos positivos de los estudiantes con el fin de que logren un mayor involucramiento en sus labores académicas.

Palabras clave:

Citas

American Educational Research Association, American Psychological Association & National Council on Measurement in Education. (2014). Standards for Educational and Psychological Testing. American Educational Research Association.

Appleton, J. J., Christenson, S. L., Kim, D., & Reschly, A. L. (2006). Measuring cognitive and psychological engagement: Validation of the Student Engagement Instrument. Journal of School Psychology, 44(5), 427-445. https://doi. org/10.1016/j.jsp.2006.04.002

Asociación Médica Mundial. (1964). Declaración de Helsinki. AMM. http://www.conamed.gob.mx/prof_salud/pdf/helsinki.pdf

Asparouhov, T., & Muthén, B. (2006). Robust chi square difference testing with mean and adjusted test statistics.

En Mplus web notes (p. 9). University of California. https:// www.statmodel.com/download/webnotes/webnote10.pdf

Ato, M., López, J., & Benavente, A. (2013). Un sistema de clasificación de los diseños de investigación en psicología. Anales de Psicología, 29(3), 1038-1059. https://doi. org/10.6018/analesps.29.3.178511

Barraza, A., & Barraza, S. (2018). Evidencias de validez y confiabilidad de la Escala de Procrastinación Académica en una población estudiantil mexicana. Revista de Psicología y Ciencias del Comportamiento de la Unidad Académica de Ciencias Jurídicas y Sociales, 9(1), 75-99. http://www.scielo.org.mx/scielo.phpscript=sci_arttext&pid

=S2007-18332018000100075

Busko, D. A. (1998). Causes and consequences of perfectionism and procrastination: A structural equation model

(Tesis de maestría). University of Guelph, Guelph, Ontario.

Byrne, B. M. (2009). Structural equation modeling with AMOS: Basic concepts, applications, and programming. Routledge & Taylor & Francis.

Byrne, Z. S., Peters, J. M., & Weston, J. W. (2016). The struggle with employee engagement: Measures and construct clarification using five samples. Journal of Applied Psychology, 101(9), 1201-1227. https://doi.org/10.1037/apl0000124

Cadime, I., Lima, S., Marques-Pinto, A., & Ribeiro, I. (2016). Measurement invariance of the Utrecht Work Engagement Scale for Students: A study across secondary school pupils and university students. European Journal of Developmental Psychology, 13(2), 254-263. https://doi.org/10.1080/17405629.2016.1148595

Canivez, G. L. (2016). Bifactor modeling in construct validation of multifactored tests: Implications for multidimensionality and test interpretation. En K. Schweizer & C. DiStefano (Eds.), Principles and methods of test construction: Standards and recent advancements (pp. 247-271).

Hogrefe.

Çapri, B., Gündüz, B., & Akbay, S. E. (2017). Utrecht Work Engagement Scale-Student Forms’ (UWES-SF) adaptation to Turkish, validity and reliability studies, and the mediator role of work engagement between academic procrastination and academic responsibility. Educational Sciences: Theory & Practice, 17(2), 411-435. https://doi.org/10.12738/estp.2017.2.0518

Carle, A. C., Jaffee, D., Vaughan, N. W., & Eder, D. (2009). Psychometric properties of three new national survey of

student engagement based engagement scales: An item response theory analysis. Research in Higher Education, 50(8), 775-794. https://doi.org/10.1007/s11162-009-9141-z

Carmona-Halty, M. A., Schaufeli, W. B., & Salanova, M. (2019). The Utrecht Work Engagement Scale for Students (UWES9S): Factorial Validity, Reliability, and Measurement Invariance in a Chilean Sample of Undergraduate University Students. Frontiers in Psychology, 10, 1017. https://doi.org/10.3389/fpsyg.2019.01017

Chen, F. F. (2007). Sensitivity of goodness of fit indexes to lack of measurement invariance. Structural

Equation Modeling, 14(3), 464-504. https://doi.org/10.1080/10705510701301834

Chen, F. F., Jing, Y., Hayes, A., & Lee, J. M. (2012). Two Concepts or Two Approaches? A Bifactor Analysis of Psychological and Subjective Well-Being. Journal of Happiness Studies, 14(3), 1033-1068. https://doi.

org/10.1007/s10902-012-9367-x

Closson, L. M., & Boutilier, R. R. (2017). Perfectionism, academic engagement, and procrastination among undergraduates: The moderating role of honors student status. Learning and Individual Differences, 57, 157-162. https:// doi.org/10.1016/j.lindif.2017.04.010

Colegio de Psicólogos del Perú. (2017). Código de ética y deontología. https://www.cpsp.pe/documentos/marco_legal/codigo_de_etica_y_deontologia.pdf

DiStefano, C., Liu, J., Jiang, N., & Shi, D. (2018). Examination of the weighted root mean square residual: Evidence for trustworthiness? Structural Equation Modeling, 25(3), 453-466. https://doi.org/10.1080/10705511.2017.1390394

Dogan, U. (2015). Student engagement, academic self-efficacy, and academic motivation as predictors of academic performance. The Anthropologist, 20(3), 553-561. https://doi.org/10.1080/09720073.2015.11891759

Dominguez-Lara, S. (2016a). Datos normativos de la Escala de Procrastinación Académica en estudiantes de psicología de Lima. Evaluar, 16(1), 20-30. https://revistas.unc.edu.ar/index.php/revaluar/article/view/15715

Dominguez-Lara S. (2016b). Secretos del coeficiente alfa. Actas Urológicas Españolas, 40(7), 471. https://doi.

org/10.1016/j.acuro.2016.04.002

Dominguez-Lara, S. (2016c). Errores correlacionados y estimación de la fiabilidad en estudios de validación: comentarios al trabajo validación de la escala ehealth literacy (eheals) en población universitaria española. Revista Española de Salud Pública, 90(9), e1-e2. http://scielo.isciii.es/pdf/resp/ v90/1135-5727-resp-90-e60002.pdf

Dominguez-Lara, S. (2018). Propuesta de puntos de corte para cargas factoriales: una perspectiva de fiabilidad de constructo. Enfermería Clínica, 28(6), 401-402. https://doi. org/10.1016/j.enfcli.2018.06.002

Dominguez-Lara, S., & Merino-Soto, C. (2017). Una modificación del coeficiente alfa de Cronbach por errores correlacionados. Revista Médica de Chile, 145(2), 269-274. https://doi.org/10.4067/S0034-98872017000200018

Dominguez-Lara, S., & Merino-Soto, C. (2018). Análisis de las malas especificaciones en modelos de ecuaciones estructurales. Revista Argentina de Ciencias del Comportamiento, 0(2), 19-24. https://doi.org/10.30882/1852.4206.v10.n2.19 595

Dominguez-Lara, S., Prada-Chapoñan, R., & Moreta-Herrera, R. (2019). Gender differences in the influence of personality on academic procrastination in Peruvian college students. Acta Colombiana de Psicología, 22(2), 125-136. https://doi.org/10.14718/ACP.2019.22.2.7

Ellis, P. (2010). The essential guide to effect sizes: Statistical power, meta-analysis, and the interpretation of research results. Cambridge University Press.

Fernández-Martínez, E., Andina-Díaz, E., Fernández-Peña, R., García-López, R., Fulgueiras-Carril, I., & Liébana-Presa, C. (2017). Social networks, engagement and resilience in university students. International Journal of Environmental Research and Public Health, 14(12), E1488. https://doi. org/10.3390/ijerph14121488

Fornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and

Measurement Error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.2307/3151312

Garzón, A., & Gil, J. (2017). El papel de la procrastinación académica como factor de la deserción universitaria. Revista Complutense de Educación, 28(1), 307-324. https://doi. org/10.5209/rev_RCED.2017.v28.n1.49682

González-Brignardello, M. P., & Sánchez-Elvira-Paniagua, A. (2013). ¿Puede amortiguar el engagement los efectos nocivos de la procrastinación académica? Acción Psicológica,10(1), 117-134. https://doi.org/10.5944/ap.10.1.7039

Hair, J. F., Black, B., Babin, B., Anderson, R. E., & Tatham, R. L. (2010). Multivariate data analysis. Prentice Hall.

Hoppe, J. D., Prokop, P., & Rau, R. (2018). Empower, not impose!: Preventing academic procrastination. Journal of

Prevention & Intervention in the Community, 46(2), 184-198. https://doi.org/10.1080/10852352.2016.1198172

Hu, Q., & Schaufeli, W. B. (2009). The factorial validity of the Maslach Burnout Inventory-Student Survey in China.

Psychological Reports, 105(2), 394-408. https://doi.org/10.2466/PR0.105.2.394-408

Kline, R. B. (2016). Principles and practice of structural equation modeling. The Guilford Press.

Kyriazos, T. A. (2018). Applied psychometrics: sample size and sample power considerations in factor analysis (EFA, CFA) and SEM in general. Psychology, 9, 2207-2230. https://doi.org/10.4236/psych.2018.98126

Lac, A., & Donaldson, C. D. (2017). Higher-order and bifactor models of the drinking motives questionnaire:

Examining competing structures using confirmatory factor analysis. Assessment, 24(2), 222-231. https://doi.

org/10.1177/1073191115603503

Lauriola, M., & Iani, L. (2017). Personality, positivity and happiness: A mediation analysis using a bifactor model.

Journal of Happiness Studies, 18(6), 1659-1682. https://doi.org/10.1007/s10902-016-9792-3

Loscalzo, Y., & Giannini, M. (2019). Study engagement in Italian university students: a confirmatory factor analysis of the Utrecht Work Engagement Scale-Student version. Social Indicators Research, 142(2), 845-854. https://doi.org/10.1007/s11205-018-1943-y

Luciano, J. V., Barrada, J. R., Aguado, J., Osma, J., & GarcíaCampayo, J. (2014). Bifactor analysis and construct validity of the HADS: A cross-sectional and longitudinal study in fibromyalgia patients. Psychological Assessment, 26(2), 395-406. https://doi.org/10.1037/a0035284

Malgady, R. (2007). How skew are psychological data? A standardized index of effect size. The Journal of General

Psychology, 134(3), 355-359. https://doi.org/10.3200/ GENP.134.3.355-360

Mardia, K. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika, 57(3), 519-530. https://doi.org/10.2307/2334770

Maslach, C., Schaufeli, W. B., & Leiter, M. P. (2001). Job burnout. Annual Review of Psychology, 52, 397-422. https://doi.org/10.1146/annurev.psych.52.1.397

Mazer, J. P. (2012). Development and validation of the Student Interest and Engagement Scales. Communication Methods and Measures, 6(2), 99-125. https://doi.org/10.1080/19312 458.2012.679244

McDonald, R. P., & Ho, M.-H. R. (2002). Principles and practice in reporting structural equation analyses. Psychological Methods, 7(1), 64-82. https://doi. org/10.1037/1082-989X.7.1.64

Medrano, L., Moretti, L., & Ortiz, A. (2015). Medición del Engagement Académico en Estudiantes Universitarios.

Revista Iberoamericana de Diagnóstico y Evaluación e Avaliação Psicológica, 40(1), 114-123. https://www.re

dalyc.org/pdf/4596/459645432012.pdf

Medrano, L. A., Galleano, C., Galera, M., & del ValleFernández, R. (2010). Creencias irracionales, rendimiento y deserción académica en ingresantes universitarios. Liberabit, 16(2), 183-192. http://www.scielo.org.pe/pdf/liber/v16n2/a08v16n2

Meng, L., & Jin, Y. (2017). A confirmatory factor analysis of the Utrecht Work Engagement Scale for students in a Chinese sample. Nurse Education Today, 49, 129-134. https://doi.org/10.1016/j.nedt.2016.11.017

Merino-Soto, C. (2015). Re-análisis de la confiabilidad del Cuestionario de autoeficacia profesional (AU10). En

Maffei et al., Pensamiento Psicológico, 13(1), 137-138. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid

=S1657-89612015000100010

Moreta-Herrera, R., & Durán-Rodríguez, T. (2018). Propiedades psicométricas de la Escala de Procrastinación

Académica (EPA) en estudiantes de psicología de Ambato, Ecuador. Revista Salud & Sociedad, 9(3), 236-247. https://doi.org/10.22199/S07187475.2018.0003.00003

Muthén, L. K., & Muthén, B. O. (1998-2015). Mplus User’s guide (7. ª ed.). Muthén & Muthén.

Palos, R., Maricutoiu, L. P., & Coster, I. (2019). Relations between academic performance, student engagement, and student burnout: A cross-lagged analysis of a two-wave study. Studies in Educational Evaluation, 60, 199-204. https://doi.org/10.1016/j.stueduc.2019.01.005

Patrzek, J., Sattler, S., van Veen, F., Grunschel, C., & Fries, S. (2015). Investigating the effect of academic procrastination on the frequency and variety of academic misconduct: a panel study. Studies in Higher Education, 40(6), 1014-1029. https://doi.org/10.1080/03075079.2013.854765

Ponterotto, J., & Charter, R. (2009). Statistical extensions of Ponterotto and Ruckdeschel’s (2007) reliability matrix for estimating the adequacy of internal consistency coefficients. Perceptual and Motor Skills, 108(3), 878-886. https://doi.org/10.2466/PMS.108.3.878-886

Raykov, T. (2004) Point and interval estimation of reliability for multiple-component measuring instruments via linear constraint covariance structure modeling, Structural Equation Modeling, 11(3), 342-356. https://doi.org/10.1207/s15328007sem1103_3

Reise, S. P. (2012). The rediscovery of bifactor measurement models. Multivariate Behavioral Research, 47(5), 667-696. https://doi.org/1080/00273171.2012.715555

Reise, S. P. Scheines, R., Widaman, K. F., & Haviland, M. G. (2013). Multidimensionality and structural coefficient bias in structural equation modeling: A bifactor perspective. Educational and Psychological Measurement, 73(1), 5-26. https://doi.org/10.1177/0013164412449831

Reschly, A. L., & Christenson, S. L. (2012). Jingle, jangle, and conceptual haziness: Evolution and future directions of the engagement construct. En S. L. Christenson, A. L. Reschly & C. Wylie (Eds.), Handbook of research on student engagement (pp. 3-19). Springer Science & Business Media. https://doi.org/10.1007/978-1-4614-2018-7_1

Rocha, C. F., Zelaya, Y. F., Sánchez, D. M., & Pérez, F. A. (2017). Prediction of University Desertion through

Hybridization of Classification Algorithms. En Proceedings of the 4th Annual International Symposium on Information Management and Big Data (pp. 215-222). http://ceur-ws. org/Vol-2029/paper21.pdf

Rodriguez, M., & Ruiz, M. (2008). Atenuación de la asimetría y de la curtosis de las puntuaciones observadas mediante transformaciones de variables: Incidencia sobre la estructura factorial. Psicológica, 29, 205-227. https://www.uv.es/psicologica/articulos2.08/6RODRIGUEZ.pdf

Rodriguez, A., Reise, S. P., & Haviland, M. G. (2016). Applying bifactor statistical indices in the evaluation of psychological measures. Journal of Personality Assessment, 98(3), 223-237. https://doi.org/10.1080/00223891.2015.1089249

Römer, J. (2016). The Korean Utrecht Work Engagement ScaleStudent (UWESS): A factor validation study. TPM Testing, Psychometrics, Methodology in Applied Psychology, 23(1), 65-81. https://doi.org/10.4473/TPM23.1.5

Salanova, M., Bresó, E., & Schaufeli, W. B. (2005). Hacia un modelo espiral de las creencias de eficacia en el estudio del burnout y del engagement. Ansiedad y estrés, 11(2-3), 215-231. http://www.want.uji.es/download/hacia-un-modeloespiral-de-las-creencias-de-eficacia-en-el-estudio-del-bur

nout-y-del-engagement/

Salanova, M., Schaufeli, W. B., Martinez, I., & Bresó, E. (2010). How obstacles and facilitators predict academic

performance: the mediating role of study burn out and engagement. Anxiety, Stress & Coping, 23(1), 53-70. https://doi.org/10.1080/10615800802609965

Salanova, M., Schaufeli, W. B., Llorens, S., Peiró, J. M., & Grau, R. (2000). Desde el «burnout» al «Engagement»:

¿una nueva perspectiva? Revista de Psicología del Trabajoy de las Organizaciones, 16(2), 117-134. https://journals.copmadrid.org/jwop/art/7c590f01490190db0ed02a5070e20f01

Sánchez-Cardona, I., Rodríguez-Montalbán, R., Toro-Alfonso, J., & Moreno-Velázquez, I. (2016). Psychometric properties of the Utrecht Work Engagement Scale-Student (UWES-S) in university students in Puerto Rico. Revista Mexicana de Psicología, 33(2), 121-134. https://psycnet.apa.org/record/2016-37425-004

Saris, W. E, Satorra, A., & van der Veld, W. M. (2009). Testing structural equation modeling or detection of misspecifications? Structural Equation Modeling, 16(4), 561-582. https://doi.org/10.1080/10705510903203433

Schaufeli, W., & Bakker, A. B. (2003). UWES Utrecht Work Engagement Scale. Utrecht University. https://www.wil

marschaufeli.nl/publications/Schaufeli/Test%20Manuals/Test_manual_UWES_Espanol.pdf

Schaufeli, W. B., & Bakker, A. B. (2010). Defining and measuring work engagement: Bringing clarity concept. En

A. B. Bakker & M. P. Leiter (Eds.), Work engagement: A handbook of essential theory and research (pp. 10-24).

Psychology Press.

Schaufeli, W., & De Witte, H. (2017). Outlook Work Engagement in Contrast to Burnout: Real and Redundant!

Burnout Research, 5, 58-60. https://doi.org/10.1016/j.burn.2017.06.002

Schaufeli, W. B., & Salanova, M. (2007). Efficacy or inefficacy, that’s the question: Burnout and engagement, and their relationships with efficacy beliefs. Anxiety, Coping & Stress, 20(2), 177-196. https://doi.

org/10.1080/10615800701217878 Schaufeli, W. B., & Salanova, M. (2011). Work engagement: On how to better catch a slippery concept. European Journal of work and Organizaytiponal Psychology, 20(1), 39-46.

https://doi.org/10.1080/1359432X.2010.515981

Schaufeli, W. B., Bakker, A. B., & Salanova, M. (2006). The measurement of work engagement with a short

questionnaire: a cross-national study. Educational and Psychological Measurement, 66(4), 701-716. https://doi.

org/10.1177/0013164405282471

Schaufeli, W. B., Martinez, I. M., Marques-Pinto, A., Salanova, M., & Bakker, A. (2002). Burn out and engagement in university students: a cross-national study. Journal of Cross-Cultural Psychology, 33(5), 464-481. https://doi.

org/10.1177/0022022102033005003

Schaufeli, W. B., Salanova, M., González-Romá, V., & Bakker, A. B. (2002). The measurement of engagement and burnout: a two sample confirmatory factor analytic approach. Journal of Happiness Studies, 3(1), 71-92. https://doi.org/10.1023/a:1015630930326

Schaufeli, W. B., Shimazu, A., Hakanen, J., Salanova, M., & De Witte, H. (2019). An ultra-short measure for work engagement: The UWES-3 validation across five countries. European Journal of Psychological. Assessment, 35(4),

-591. https://doi.org/10.1027/1015-5759/a000430

Serrano, C., Andreu, Y., Murgui, S., & Martínez, P. (2019). Psychometric properties of Spanish version student Utrecht Work Engagement Scale (UWES-S-9) in high-school students. The Spanish Journal of Psychology, 22, e21. https://doi.org/10.1017/sjp.2019.25

Shrive, F. M., Stuart, H., Quan, H., & Ghali, W. A. (2006). Dealing with missing data in a multi-question depression scale: a comparison of imputation methods. BMC Medical Research Methodology, 6(1), 57. https://doi.

org/10.1186/1471-2288-6-57

Silva, J. O., Junior, G. A., Coelho, I. C., Picharski, G. L., & Zagonel, I. P. (2018). Engajamento entre Estudantes do

Ensino Superior nas Ciências da Saúde (Validação do Questionário Ultrecht Work Engagement Scale (UWES-S)

com Estudantes do Ensino Superior nas Ciências da Saúde). Revista Brasileira de Educação Médica, 42(2), 15-25.

https://doi.org/10.1590/1981-52712015v42n2rb20170112

Sijtsma, K. (2009). On the use, the misuse, and the very limited usefulness of Cronbach’s alpha. Psychometrika, 74(1), 107- 120. https://doi.org/10.1007/s11336-008-9101-0

Smits, I. A., Timmerman, M. E., Barelds, D. P., & Meijer, R. R. (2015). The Dutch symptom checklist-90-revised: is

the use of the subscales justified? European Journal of Psychological Assessment, 31(4), 263-271. https://doi.

org/10.1027/1015-5759/a000233

Steel, P. (2007). The nature of procrastination: A meta-analytic and theoretical review of quintessential self-regulatory failure. Psychological Bulletin, 133(1), 65-94. https://doi. org/10.1037/0033-2909.133.1.65

Steel, P. (2011). Procrastinación. Editorial Grijalbo.

Steel, P., & Klingsieck, K. B. (2016). Academic procrastination: Psychological antecedents revisited. Australian

Psychologist, 51(1), 36-46. https://doi.org/10.1111/ap.12173

Stefansson, K. K., Gestsdottir, S., Geldhof, G. J., Skulason, S., & Lerner, R. M. (2016). A bifactor model of school engagement: Assessing general and specific aspects of behavioral, emotional and cognitive engagement among adolescents. International Journal of Behavioral Development, 40(5), 471-480. https://doi.org/10.1177/0165025415604056

Strunk, K. K., Cho, Y., Steele, M. R., & Bridges, S. L. (2013). Development and validation of a 2x2 model of time-related academic behavior: Procrastination and timely engagement. Learning and Individual Differences, 25(1), 35-44. https://doi.org/10.1016/j.lindif.2013.02.007

Wang, M. T., Fredricks, J. A., Ye, F., Hofkens, T. L., & Linn, J. S. (2016). The math and science engagement scales:

Scale development, validation, and psychometric properties. Learning and Instruction, 43, 16-26. https://doi.

org/10.1016/j.learninstruc.2016.01.008

Wellborn, J. G., & Connell, J. P. (1987). Manual for the Rochester Assessment Package for Schools. University of

Rochester.

West, S. G., Taylor, A. B., & Wu, W. (2012). Model fit and model selection in structural equation modeling. En R. H.

Hoyle (Ed.), Handbook of Structural Equation Modeling (pp. 209-231). Guilford.

Wolf, E., Harrington, K., Clark, S., & Miller, M. (2013). Sample size requirements for structural equations modeling: an evaluation of power, bias, and solution propriety. Educational and Psychological Measurement, 76(6), 913-934. https://doi.org/10.1177/0013164413495237

Zhen, R., Liu, R.-D., Ding, Y., Wang, J., Liu, Y., & Xu, L. (2017). The mediating roles of academic self-efficacy and academic emotions in the relation between basic psychological needs satisfaction and learning engagement among Chinese adolescent students. Learning and Individual Differences, 54, 210-216. https://doi.org/10.1016/j.lindif.2017.01.017

Zinbarg, R. E., Yovel, I., Revelle, W., & McDonald, R. P. (2006). Estimating generalizability to a latent variable common to all of a scale’s indicators: A comparison of estimators for ωh. Applied Psychological Measurement, 30(2), 121-144. https://doi.org/10.1177/0146621605278814

Citado por

Artículos más leídos del mismo autor/a

Sistema OJS 3 - Metabiblioteca |